MCW AFNI — Buckets
Robert W. Cox, Ph.D.

rwcoxOmcw.edu

© 1997 Medical College of Wisconsin

The New ‘Bucket’ Dataset Type

A bucket dataset is a 3D dataset that can contain an arbitrary number of sub-bricks. These
sub-bricks are not considered to be time-ordered; rather, the bucket dataset type is a place
where the user can toss 3D bricks of data.

This documentation is provided to update the AFNI plugins manual and to explain the
programmatic interface for creating bucket datasets. It is current as of AFNI 2.20, and is
at present a work-in-progress (i.e., subject to change at a moment’s whim).

Note that the entire MCW A FNI package—including plugins—must be recompiled to use
these features. This is because the internal storage scheme used for datasets has been
modified slightly.

Contents

1 Sub-brick Auxiliary Data 2
2 Program 3dbucket 3
3 Program 3drefit 5
4 Creating Buckets in a Program 7
5 Changes in AFNI 15
6 Still to Come 15

MCW AFNI Buckets —1- January 8, 1998

It has always been possible to create a 3D (no time) dataset with multiple sub-bricks.
Until now, there has not been any program that would do this, nor would any but the first
sub-brick be visible from within AFNI. The new program 3dbucket allows the creation of
datasets with an arbitrary number of sub-bricks drawn from the bricks of existing dataset.
AFNI has been modified to allow the user to switch viewing between sub-bricks. The dataset
structure has been extended to allow extra information to be attached to each sub-brick to
make them easy to distinguish. A programming interface has been implemented that allows
external programs (and plugins) to create 3D bucket datasets.

1 Sub-brick Auxiliary Data

Three new types of data can be associated with each sub-brick in any AFNI dataset (bucket,
3D+time, ...). They are

Label This is a character string that is displayed on the AFNI bucket chooser menu that
lets the user decide which sub-brick should be displayed (see §5).

Keywords This is a character string that contains a list of keywords that are to be associ-
ated with a given sub-brick. Each keyword is separated by the C substring " ; ". At
present, the keywords have no function within any MCW AFNI program, but that is
likely to change shortly.

Statistical Parameters Each sub-brick can have a statistical type attached, exactly as
some of the earlier function types can. If a sub-brick with a valid statistical type is
chosen to be the threshold sub-brick from within AFNI, then the nominal p-value per
voxel will be displayed beneath the threshold slider.

Most of these sub-brick statistical types require auxiliary parameters. The list of
statistical types is:

| Name | Type Code | Distribution | Auxiliary parameters |
fico | FUNC_COR_TYPE | Correlation Coeff | # Samples, # Fit Param, # Ort Param
fitt | FUNC_TT_TYPE | Student t Degrees-of-Freedom (DOF)
fift | FUNC_FT_TYPE | F ratio Numerator DOF, Denominator DOF
fizt | FUNC_ZT_TYPE | Standard Normal | — none —
fict | FUNC_CT_TYPE | Chi-Squared DOF
fibt | FUNC_BT_TYPE | Incomplete Beta | Parameters a and b
fibn | FUNC_BN_TYPE | Binomial # Trials, Probability per trial
figt | FUNC.GT_-TYPE | Gamma Shape, Scale
fipt | FUNC_PT_TYPE | Poisson Mean

The ‘Name’ is used on the command line when modifying the auxiliary data inside a
dataset using the program 3drefit. The “Type Code’ is a C macro for a constant that
is used from within a program when modifying the auxiliary data.

MCW AFNI Buckets —2— January 8, 1998

In addition to the sub-brick specific keywords list, I have also added a global keywords list
that pertains to the entire dataset. One ultimate purpose of the keywords lists is to allow
the selection of datasets and sub-bricks based on keywords.

It is possible to attach a label and a statistical type to sub-bricks of non-bucket datasets.
But they will have no effect.

2 Program 3dbucket

At this moment, the only program that can create a bucket dataset is 3dbucket. (In
particular, to3d cannot create a bucket dataset!) 3dbucket concatenates 3D sub-bricks
from multiple input datasets and produce one output bucket dataset. The main purpose of
this program is to experiment with bucket datasets. Its help file follows:

Usage: 3dbucket options
where the options are:

-prefix pname = Use ’pname’ for the output dataset prefix name.
OR -output pname [default="buck’]

-session dir Use ’dir’ for the output dataset session directory.

[default=’./’=current working directory]

-dry = Execute a ’dry run’; that is, only print out
what would be done. This is useful when
combining sub-bricks from multiple inputs.

-verb = Print out some verbose output as the program
proceeds (-dry implies -verb).

-fbuc = Create a functional bucket.

-abuc = Create an anatomical bucket. If neither of

these options is given, the output type is
determined from the first input type.

Other arguments are taken as input datasets. A dataset is specified
using one of the forms

’prefix+view’, ’prefix+view.HEAD’, or ’prefix+view.BRIK’.
You can also add a sub-brick selection list after the end of the
dataset name. This allows only a subset of the sub-bricks to be
included into the output (by default, all of the input dataset
is copied into the output). A sub-brick selection list looks like
one of the following forms:

fred+orig[5] ==> use only sub-brick #5
fred+orig[5,9,17] ==> use #5, #9, and #12
fred+orig[5..8] or [5-8] ==> use #5, #6, #7, and #8
fred+orig[5..13(2)] or [6-13(2)] ==> use #5, #7, #9, #11, and #13

Sub-brick indexes start at 0. You can use the character ’$’

MCW AFNI Buckets —3— January 8, 1998

to indicate the last sub-brick in a dataset; for example, you
can select every third sub-brick by using the selection list
fred+orig[0..$(3)]

N.B.:

The sub-bricks are output in the order specified, which may

not be the order in the original datasets. For example, using
fred+orig[0..$(2),1..$(2)]
will cause the sub-bricks in fred+orig to be output into the
new dataset in an interleaved fashion. Using
fred+orig[$..0]
will reverse the order of the sub-bricks in the output.

N.B.:

Bucket datasets have multiple sub-bricks, but do NOT have

a time dimension. You can input sub-bricks from a 3D+time dataset
into a bucket dataset. You can use the ’3dinfo’ program to see
how many sub-bricks a 3D+time or a bucket dataset contains.

N.B.:

The ’$’, >(’, ’)’, ’[’, and ’]’ characters are special to

the shell, so you will have to escape them. This is most easily
done by putting the entire dataset plus selection list inside
single quotes, as in ’fred+orig[5..7,9]’.

Some additional points:

If an input sub-brick has a statistical type, then its type and auxiliary parameters
are copied to the output sub-brick. This happen if the input dataset is one of the
functional types with a statistics threshold attached (e.g., the second sub-brick from a
fico dataset). It can also happen if the input dataset is itself a bucket dataset.

The sub-brick labels for the output dataset are of the form prefix[index], where
‘prefix’ is the input dataset and ‘index’ is the integer index of the sub-brick in the
input dataset.

The output sub-brick keywords are copied from the input sub-bricks, if any. The
additional keyword prefix+view[index] is also attached to the sub-brick keyword
list.

I intend to extend the input sub-brick selection scheme for 3dbucket to allow selection
from keyword lists. Eventually, it will also be possible to construct datasets ‘on-the-fly’
on the command line for any program.

Anatomical bucket datasets are not particularly useful, at least at present. (Got any
ideas for applications?)

MCW AFNI Buckets —4— January 8, 1998

3 Program 3drefit

This program lets the user change the contents of a dataset header. It has been extended
to let the sub-brick auxiliary data be modified. Its help file follows:

Usage: 3drefit [options] dataset
where the options are

-orient code

X%

-xorigin distx
-yorigin disty
-zorigin distz

-xdel dimx
-ydel dimy
-zdel dimz

-TR time

-newid

X%

X%

X%

-statpar v ...

MCW AFNI Buckets

Sets the orientation of the 3D volume(s) in the .BRIK.
The code must be 3 letters, one each from the
pairs {R,L} {A,P} {I,S}. The first letter gives
the orientation of the x-axis, the second the
orientation of the y-axis, the third the z-axis:

R = right-to-left L = left-to-right

A = anterior-to-posterior P = posterior-to-anterior

I = inferior-to-superior S = superior-to-inferior
WARNING: when changing the orientation, you must be sure
to check the origins as well, to make sure that the volume
is positioned correctly in space.

Puts the center of the edge voxel off at the given
distance, for the given axis (x,y,z); distances in mm.
(x=first axis, y=second axis, z=third axis).

Usually, only -zorigin makes sense. Note that this
distance is in the direction given by the corresponding
letter in the -orient code. For example, ’-orient RAI’
would mean that ’-zorigin 30’ sets the center of the
first slice at 30 mm Inferior. See the to3d manual
for more explanations of axes origins.

SPECIAL CASE: you can use the string ’cen’ in place of
a distance to force that axis to be re-centered.

Makes the size of the voxel the given dimension,
for the given axis (x,y,z); dimensions in mm.
WARNING: if you change a voxel dimension, you will

probably have to change the origin as well.

Changes the TR time to a new value (see ’to3d -help’).
WARNING: this only applies to 3D+time datasets.

Changes the ID code of this dataset as well.

Changes the statistical parameters stored in this
dataset. See ’to3d -help’ for more details.

—5— January 8, 1998

-markers Adds an empty set of AC-PC markers to the dataset,
if it can handle them (is anatomical, doesn’t already
have markers, is in the +orig view, and isn’t 3D+time) .

-appkey 11 Appends the string ’11’ to the keyword list for the
whole dataset.

-repkey 11 Replaces the keyword list for the dataset with the
string ’11°.

—empkey Destroys the keyword list for the dataset.

-type Changes the type of data that is declared for this

dataset, where ’type’ is chosen from the following:
ANATOMICAL TYPES

spgr == Spoiled GRASS fse == Fast Spin Echo
epan == Echo Planar anat == MRI Anatomy

ct == CT Scan spct == SPECT Anatomy
pet == PET Anatomy mra == MR Angiography
bmap == B-field Map diff == Diffusion Map
omri == (Other MRI abuc == Anat Bucket

FUNCTIONAL TYPES

fim == Intensity fith == Inten+Thr
fico == Inten+Cor fitt == Inten+Ttest
fift == Inten+Ftest fizt == Inten+Ztest
fict == Inten+ChiSq fibt == Inten+Beta
fibn == Inten+Binom figt == Inten+Gamma
fipt == Inten+Poisson fbuc == Func-Bucket

The options below allow you to attach auxiliary data to sub-bricks
in the dataset. Each option may be used more than once so that
multiple sub-bricks can be modified in a single run of 3drefit.

-sublabel n 11 Attach to sub-brick #n the label string ’11°.
-subappkey n 11 Add to sub-brick #n the keyword string °’11°.
-subrepkey n 11 Replace sub-brick #n’s keyword string with ’11°.
-subempkey n Empty out sub-brick #n’ keyword string

—-substatpar n type v ...
Attach to sub-brick #n the statistical type and
the auxiliary parameters given by values ’v ...’,
where ’type’ is one of the following:

MCW AFNI Buckets —6— January 8, 1998

type Description PARAMETERS

fico Cor SAMPLES FIT-PARAMETERS ORT-PARAMETERS

fitt Ttest DEGREES-of-FREEDOM

fift Ftest NUMERATOR and DENOMINATOR DEGREES-of-FREEDOM
fizt Ztest N/A

fict ChiSq DEGREES-of-FREEDOM

fibt Beta A (numerator) and B (denominator)

fibn Binom NUMBER-o0f-TRIALS and PROBABILITY-per-TRIAL
figt Gamma SHAPE and SCALE

fipt Poisson MEAN

3drefit is the only program that lets the user change the sub-brick label, keywords, and sta-
tistical parameters. In particular, if you don’t like the default labels provided by 3dbucket,
you must use 3drefit to patch things up. Program 3dinfo has been modified so that
it will print out the sub-brick auxiliary data (including keywords). This will help guide
the use of 3drefit.

4 Creating Buckets in a Program

Modifying Sub-Brick Parameters

A number of new ADN_ commands have been added to EDIT_dset_items in order to make
creating bucket datasets moderately painless. In combination with a couple of other utility
routines, it is possible to create an empty dataset with n sub-bricks, attach data arrays to
them and auxiliary data to them, and even later to expand the number of sub-bricks.

The new ADN_ commands are described below. (This section should be read in conjunction
with §2.7 of the AFNI plugins manual.) The inputs to EDIT_dset_items are copied into the
internal data structure of the dataset being modified, and so can be freed or otherwise
recycled after this function return. Bucket construction examples will be given later.

Control Code Data Type Meaning

ADN brick label one char * Unlike the earlier ADN_ codes, this one, and the
others below that end in ‘_one’ are be used to
set auxiliary parameters for individual sub-bricks
in a dataset. This is done by adding the sub-
brick index to the ADN_ code. Note that only one
version of any particular ‘_one’ code can be used
per call to EDIT dset_items—to set multiple sub-
bricks, a loop is required. This particular code is
used to set the label that is displayed in the menu
that is used to select which sub-brick is displayed.

MCW AFNI Buckets —7- January 8, 1998

ADN_brick_fac_one float

ADN_brick_stataux_one
float x*

ADN_brick _keywords_replace_one
char *

ADN_brick_keywords_append_one
char *

ADN_keywords_replace char *

ADN_keywords_append char *

This code is used to set the scale factor for
an individual sub-brick. The alternative code,
ADN_brick_fac (described in the plugins manual),
is used to set all the sub-brick factors at once.
This code is used to set the auxiliary statistical
parameters for an individual sub-brick. The float
array that is passed as the paired argument must
have the following contents:
statcode npar vl v2 ... vn

where statcode is the type of statistic stored in the
sub-brick, npar is the number of parameters that
follow in the array, and v1 ... vn are the parameters
for that type of statistic. (Note that npar may
be 0.) See §1 for details on the different statistical
types supported by AFNI.

This code is used to delete the keywords associated
with a sub-brick and replace them with a new set.
The list of keywords is stored as a single string, with
distinct entries separated by the substring " ; .
If you want to enter multiple distinct keywords with
this operation, you must supply the " ; " yourself
within the paired argument.

This code is used to add keywords to the list asso-
ciated with a sub-brick. The input character string
will be appended to the existing keyword string,
with " ; " separating them. (This function will
supply the " ; " separator.) If there are no key-
words, this operation is equivalent to the replace
function above.

This is used to replace the keywords list associated
with the entire dataset.

This is used to append to the keyword list for the
entire dataset.

To make some of these steps easier, the following C macros have been defined:

e EDIT BRICK_LABEL(ds,iv,str)

will change the label in the iv" sub-brick of dataset ds to the string str.

e EDIT BRICK FACTOR(ds,iv,fac)

will change the scaling factor in the iv*® sub-brick of dataset ds to the float value

fac.

e EDIT BRICK_ADDKEY(ds,iv,str)

will add the keyword string str to the iv*® sub-brick of dataset ds.

MCW AFNI Buckets

—8— January 8, 1998

e EDIT BRICK_TO_FICO(ds,iv,nsam,nfit,nort)
changes the iv'® sub-brick of dataset ds to be fico type (correlation coefficient) with
statistical parameters nsam, nfit, and nort.

e EDIT BRICK_TO FITT(ds,iv,ndof)
changes the iv" sub-brick of dataset ds to be fitt (i-test) type with statistical
parameter ndof.

e EDIT BRICK_TO_FIFT(ds,iv,ndof,ddof)
changes the iv'" sub-brick of dataset ds to be fift (F-test) type with statistical
parameters ndof and ddof.

e EDIT BRICK_TO_FIZT(ds,iv)
changes the iv'" sub-brick of dataset ds to be fizt type (z-score, or normally dis-
tributed).

e EDIT_BRICK_TO_FICT(ds,iv,ndof)
changes the iv'" sub-brick of dataset ds to be fict type (X2 distributed) with statistical
parameter ndof.

e EDIT BRICK TO FIBT(ds,iv,a,b)
changes the iv‘" sub-brick of dataset ds to be fibt type (beta distributed) with
statistical parameters a and b.

e EDIT BRICK TO FIBN(ds,iv,ntrial,prob)
changes the iv" sub-brick of dataset ds to be fibn type (binomial distributed) with
statistical parameters ntrial and prob.

e EDIT BRICK TO FIGT(ds,iv,shape,scale)
changes the ivi" sub-brick of dataset ds to be fign type (gamma distributed) with
statistical parameters shape and scale.

e EDIT BRICK_TO_FIPT(ds,iv,mean)
changes the iv‘® sub-brick of dataset ds to be fipt type (Poisson distributed) with
statistical parameter mean.

MCW AFNI Buckets -9 January 8, 1998

Example: Creating a Bucket Dataset All at Once

In this example, an empty copy of an input dataset is made (to get the geometry correct),
then the new dataset is turned into a function bucket, then the sub-bricks are attached.
The following code is adapted from 3dbucket.c.

THD_3dim_dataset * old_dset , * new_dset ;
char * output_prefix , output_session ;
int new_nvals , iv ;

short ** bar ; /* bar[iv] points to data for sub-brick #iv */
char ** new_label ; /* new_label[iv] points to label for #iv */
char *x new_keyw ; /* new_keyw[iv] points to keywords for #iv */
float * new_fac ; /* new_facl[iv] is new scale factor for #iv */
float sax[32] ; /* statistical auxiliary parameters */

/*-- Copy the input dataset structure, but not data -—*/
new_dset = EDIT_empty_copy(old_dset) ;
/*-- Modify some structural properties.

Note that the new_nvals just makes empty

sub-bricks, without any data attached. -—*/

EDIT_dset_items(new_dset ,

ADN_prefix , output_prefix ,
ADN_directory_name, output_session ,
ADN_type , HEAD_FUNC_TYPE |,
ADN_func_type , FUNC_BUCK_TYPE,
ADN_ntt , 0, /* no time! x/
ADN_nvals , new_nvals ,
ADN_malloc_type , DATABLOCK_MEM_MALLOC ,
ADN_none) ;

if(THD_is_file(DSET_HEADNAME (new_dset))){
fprintf (stderr,"*** Fatal error: file %s already exists!\n",
DSET_HEADNAME (new_dset)) ;
exit (1) ;

/*-- Loop over new sub-brick index,
attach data array with EDIT_substitute_brick
(this just attaches the pointer, it DOES NOT copy the array),
then put some strings into the labels and keywords,
and modify the sub-brick scaling factor
(a zero scaling factor means don’t scale the data array). --*/

MCW AFNI Buckets -10- January 8, 1998

for(iv=0 ; iv < new_nvals ; iv++){
EDIT_substitute_brick(new_dset , iv , /* attach bar[iv] to */
MRI_short , bar[iv]) ; /* be sub-brick #iv. */
/* don’t free bar[iv]! */

EDIT_dset_items(new_dset ,

ADN_brick_label_one +iv, new_labell[iv] ,

ADN_brick_keywords_replace_one+iv, new_keyw[iv] |,

ADN_brick_fac_one +iv, new_fac[iv] ,
ADN_none) ;

/*-— Make sub-brick #2 be a t-test —--%/

sax[0] = FUNC_TT_TYPE ;
sax[1] = 1.0 ;
sax[2] = degrees_of_freedom ;

EDIT_dset_items(new_dset ,
ADN_brick_stataux_one + 2 , sax ,
ADN_none) ;

/*-- write new dataset to disk —--%*/

DSET_write(new_dset) ;

Adding Sub-Bricks to a Bucket Dataset

In the above example, all the sub-bricks were created at once. They were initially empty,
after the first call to EDIT_dset_items, but otherwise had all the structure needed. After
a sub-brick has an actual data array attached to it, the ADN_nvals code can no longer be
used to change the number of sub-bricks in dataset.

If a dataset already has actual data attached to any of its sub-bricks, another method
must be used to add a new sub-brick:

short * gbar ;
float qfac ;
EDIT_add_brick(new_dset , MRI_short , qfac , gbar) ;

will create a new sub-brick in the dataset, with data type short, scale factor qfac, and
data array gbar. (The pointer gbar is just copied into the sub-brick—the data it points
to now ‘belongs’ to the dataset and should not be freed by you!) If you wish to attach
a label, keywords, or statistical parameters to this new brick, you would do this using
EDIT dset_items (using the correct index for the new sub-brick).

MCW AFNI Buckets -11- January 8, 1998

Note that if you are doing this to a 3D+time dataset, as opposed to a bucket dataset,
then a little more needs to be done. See plug.-realtime.c for an example of how the AFNI
real-time system uses EDIT_add_brick to grow a 3D+time dataset during image acquisition.
Accessing Sub-Brick Data
The following C macros can be used to access the contents of sub-bricks and their associated
data. The argument ds is a pointer to a dataset struct, and the argument iv is a sub-

brick index.

Macro
ISVALID DSET(ds)

ISANATBUCKET (ds)

ISFUNCBUCKET (ds)
ISBUCKET (ds)

DSET_BRICK_TYPE(ds,iv)

DSET_BRICK_ARRAY (ds,iv)
DSET_BRICK_FACTOR(ds,iv)
DSET_NVALS (ds)

DSET_BRICK_LABEL(ds,iv)

DSET _BRICK_STATCODE(ds,iv)

DSET_BRICK_STATAUX(ds,iv)

DSET_BRICK_STATPAR(ds,iv,jj)

MCW AFNI Buckets

Meaning

Returns 1 if ds is a valid pointer to a dataset, or 0 if it
is not.

Returns 1 if ds is an anatomy bucket dataset, 0 if it is
not.

Returns 1 if ds is a function bucket dataset, 0 if it is not.

Returns 1 if ds is a bucket dataset (function or anatomy),
0 if it is not.

Returns an integer describing what type of data is stored
in the sub-brick array.

Returns a pointer to the sub-brick array.
Returns the sub-brick floating point scale factor.
Returns the number of sub-bricks in a dataset.

Returns a pointer to the sub-brick label. This pointer
will not be NULL. Do not write into this string!

Returns an integer with the statistical type of a sub-
brick. A positive value means that this sub-brick can
be interpreted as a statistic. Note that if ds is on of the
older 2-brick datasets such as fico, then calling this with
iv=1 will return the correct code, even though that code
is actually associated with the dataset as a whole, not
the sub-brick.

Returns a pointer to a float array with the sta-
tistical parameters for this sub-brick. This may be
NULL, which means that you did something wrong. Do
not write into this array! The number of param-
eters in this array can be determined from the table
in §1, or from FUNC_need stat_aux[kv] where kv =
DSET_BRICK_STATCODE(ds,iv).

Returns the jj'" statistical parameter for this sub-brick.
This will be a float.

-12—- January 8, 1998

DSET_BRICK_KEYWORDS (ds,iv) Returns a pointer to the keywords string for this sub-
brick (char *). Do not write into this string! This
pointer may be NULL.

DSET KEYWORDS (ds) Returns a pointer to the keywords string for the entire
dataset. Do not write into this string! This pointer may
be NULL.

Creating a Bucket from a 3D+time Dataset

I have written a utility routine to create a function bucket dataset from an input 3D+time
dataset. This function takes as input a user-supplied function that returns the bucket values
at each voxel. This function resides in 3dmaker.c (a new file), and can be called from a
plugin or from a command-line program. Its calling sequence is:

new_dset = MAKER_4D_to_typed_fbuc(THD_3dim_dataset * old_dset ,
char * new_prefix , int new_datum ,
int ignore , int detrend ,
int nbrik ,gemeric_func * user_func ,
void * user_data) ;

The inputs to this function are:

old_dset Pointer to old dataset;
note that this dataset must not be warp-on-demand.

new_prefix String to use as filename prefix.

new_datum Type of data to store in output brick;
if negative, will use datum from old_dset.

ignore Number of data points to ignore at the start.

detrend If nonzero, this routine will detrend (a+b*t)
each time series before passing it to user_func.

nbrik Number of values (and sub-bricks) to create at each voxel location.
user_func Function to compute outputs; discussed below.
user_data Discussed below.

The output is a pointer to a new dataset. If NULL is returned, some error occurred.
The user_func function should be declared like so:

void user_func(double tzero , double tdelta ,
int npts , float ts[] , double ts_mean , double ts_slope ,
void * ud , int nbrik , float * val) ;

The arguments to user_func are:

tzero Time at ts[0].

tdelta Time at ts[1] (i.e., ts[k] is at tzero+k*tdelta);
tzero and tdelta will be in sec if this is truly ‘time’.

MCW AFNI Buckets -13—- January 8, 1998

npts
ts

ts_mean

ts_slope

ud

nbrik

val

Number of points in ts array.

One voxel time series array, ts[0] ...ts[npts-1];
note that this will always be a float array, and that ts will
start with the ignore'™ point of the actual voxel time series.

Mean value of ts array.

Slope of ts array; this will be inversely proportional to tdelta
(units of 1/sec); if detrend is nonzero, then the mean and slope
will been removed from the ts array.

The user_data pointer passed in here; this can contain whatever
control information the user wants.

Number of output values that this function should return for
the voxel corresponding to input data ts.

Pointer to return values for this voxel;
note that this is a float array of length nbrik, and that values
you don’t fill in will be set to zero.

Before the first timeseries is passed, user_func will be called with arguments

(0.0, 0.0, nvox , NULL , 0.0 , 0.0 , user_data , nbrik , NULL)

where nvox = number of voxels that will be processed. This is to allow for some setup
(e.g., malloc). After the last timeseries is passed, user_func will be called again with argu-

ments

(0.0, 0.0, 0, NULL, 0.0, 0.0 , user_data , nbrik , NULL)

This is to allow for cleanup (e.g., free).

parameters and labels).

MCW AFNI Buckets

-14— January 8, 1998

Note that the only difference between these
‘notification’ calls is the third argument. After the new dataset is created, you will likely
want to modify some of the auxiliary data associated with its sub-bricks (e.g., set statistical

5 Changes in AFNI

If the active datasets are buckets, then the set of choosers in the Define Function control
panel changes. The figure below shows the new bucket sub-brick choosers on the left; the

old style sub-brick choosers are shown on the right for comparison (these are used with
the non-bucket dataset types).

Corr Inten Options Options
4 Anat underlay 4 Anat underlay
% Func underlay 4 Func underlay

4 Func @Thr underlay

nnatu2 [Oo] —
Funcoutg12@1 [O1 [O1 1
Thr outg12@1 [11 [11 7

4 Func @Thr underlay

4 Func=Intensity

4 Func=Threshold

Anat 03 1149
Func —0.875557: 3.089196

Anat O 5190 Thr —0,8504: 0,9508

Func —-264,4383 ; D67, 6606
Thr —0.4071: 0.7976

B autoRange: 567.6656

I
3.-25 | 9

=[O | T Pos?

N autoRange: 3.,089196

With bucket sub-brick choosers With old-style choosers

Note that any sub-brick of a bucket dataset can be used as a threshold. This is true
even if it does not have statistical parameters attached.
be computed, of course.)

Two new buttons have been added to the|Misc |menu under the Define Datamode control
panel: |Anat Info|and [Func Info] These buttons will popup message windows with the
output of program 3dinfo about the current anatomical and functional datasets. This is

to help look up keywords and statistical types of sub-bricks. In addition, the button
has been removed from the Define Function control panel.

(In that case, no p-value can

6 Still to Come
Things that are needed:

e Routines to deal with keyword lists, and a mechanism to allow the user to select sub-
bricks (and datasets) based on keywords.

e A mechanism to allow the user to assemble datasets ‘on-the-fly’ using keyword and/or
sub-brick index criteria. (A generalization of the syntax of 3dbucket is a possibility.)

e Applications that create buckets (e.g., multiple regression, ...).

MCW AFNI Buckets —15— January 8, 1998

